<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
</head>
<body>
<p>A toda la comunidad, </p>
<div class="moz-forward-container">
<p>les reenviamos información sobre el Curso de Deep Learning y
Aplicaciones en Física y Astronomía, <b>con los horarios
actualizados</b>. El mismo estará a cargo del Dr. Clécio de
Bom (profesor invitado por la Dra. Analía Smith Castelli), y se
dictará entre los <b>días 25 y 28 de septiembre</b>. Este curso
ha sido organizado en el marco de la designación del Dr. de Bom
como Profesor Visitante de la FCAG. </p>
<p>Atentamente,</p>
Secyt-FCAG
<div class="moz-forward-container"><br>
<div dir="ltr"><b>-----------------------------</b>
<div style="text-align:center"><b><br>
</b></div>
<div style="text-align:center"><b>Introduction to Deep
Learning and Applications in Physics and Astronomy</b></div>
<div style="text-align:center"><b>La Plata, Sept 25th to Sept
28th, 2023</b></div>
<br>
<div>
<div dir="ltr" class="gmail_signature"
data-smartmail="gmail_signature">
<div dir="ltr">
<div>The aim of this course is to give a general and
practical introduction to Deep Learning tools and data
treatment with a focus on Astronomy and physics
examples. We plan 4 classes, and in addition, we plan
to offer time for tutoring and hands-on.<br>
<br>
To be approved in this course, the student will have
30 days from Oct 5 to present a report with an
application of AI techniques presented in the course.
All students will also make a 5-10 minutes video
describing the project and results. We will organize a
virtual meeting on a date to be determined for
presentation of the videos and discussion of all
projects.<br>
<br>
Postdocs as well as PhD and undergraduate students of
Astronomy, Geophysics and Meteorology are welcome to
attend this course. Researchers are also welcome to
attend but priority will be given to postdocs and
students.<br>
<br>
If you are interested in attending this course, please
contact Dr. Analía Smith Castelli (<a
href="mailto:asmith@fcaglp.unlp.edu.ar"
moz-do-not-send="true" class="moz-txt-link-freetext">asmith@fcaglp.unlp.edu.ar</a>).<br>
<br>
---------------<br>
<br>
<div style="text-align:center"><b><u>Program and
Schedule of the Lectures</u></b></div>
<br>
<b>Monday Sept 25 (Planetarium)</b><br>
<br>
<b>2:30 PM.</b> Lecture 1: Introduction to Artificial
Intelligence and Deep Neural Networks<br>
<b>3:30 PM.</b> Lab1: Introduction to python and
Jupyter notebooks, collab and neural Networks</div>
<div><b>4:30 PM.</b> Coffee<br>
<br>
<b>Tuesday Sept 26 (Planetarium)</b><br>
<br>
<b>2:30 PM.</b> Lecture 2: Data preparation and
training (PDF)<br>
<b>3:30 PM.</b> Lab2: Data exploration and
preprocessing</div>
<div><b>4:30 PM.</b> Coffee<br>
<br>
<b>Wednesday Sept 27 (Planetarium)</b><br>
<br>
<b>2:30 PM.</b> Lecture 3: Regression &
Classification with Deep Learning (PDF)<br>
<b>3:30 PM.</b> Lab3: Example applications in
Astronomy and Physics. Training Convergence</div>
<div><b>4:30 PM</b>. Coffee<br>
<br>
<b>Thursday Sept 28 (Planetarium)</b><br>
<br>
<b>2:30 PM.</b> Lecture 4: Uncertainty and
Segmentation<br>
<b>3:30 PM.</b> Lab4: Example applications in
Astronomy and Physics of uncertainty and segmentation.</div>
<div><b>4:30 PM.</b> Coffee<br>
<br>
<b>Friday Sept 29 – Wednesday Oct 4 (IALP meeting
room)</b><br>
<br>
<b>2:30 PM - 4:30 PM.</b> Projects Discussion<br>
</div>
<div><br>
</div>
<div>---------------</div>
<div><font size="1">Dra. Analia Smith Castelli</font></div>
<div><font size="1">Investigadora Independiente -
CONICET</font></div>
<div><font size="1">Instituto de Astrofisica de La
Plata, UNLP-CONICET</font></div>
<div><font size="1">Facultad de Ciencias Astronomicas y
Geofisicas, UNLP</font></div>
<div><font size="1">Paseo del Bosque s/n, La Plata,
Buenos Aires, Argentina (B1900FWA)</font></div>
<div><font size="1">email: <a
href="mailto:asmith@fcaglp.unlp.edu.ar"
target="_blank" moz-do-not-send="true"
class="moz-txt-link-freetext">asmith@fcaglp.unlp.edu.ar</a></font></div>
<div><font size="1">phone: +54 221 4236593 int. 1117</font></div>
<div><br>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</body>
</html>